A database of categories
Revisión | 5f48895d0069b686eb6a43605ee117304d7b874d (tree) |
---|---|
Tiempo | 2021-09-11 12:26:18 |
Autor | Corbin <cds@corb...> |
Commiter | Corbin |
Refactor more subcategories.
Add double categories, fix up incorrect parts of simplicial objects,
improve restriction categories.
@@ -51,28 +51,17 @@ SSet).</p> | ||
51 | 51 | <p>{{ name }} is semiadditive; products and sums coincide (enriched in CMon).</p> |
52 | 52 | {% endif %} |
53 | 53 | |
54 | -{% set subcats = sql("select subcategory from subcategories where parent = ?", [name]) %} | |
54 | +{% set subcats = sql( | |
55 | +"select * from all_subcategories where supercategory = ?", [name]) %} | |
55 | 56 | {% if subcats %} |
56 | -<h2>Subcategories</h2> | |
57 | +<h2>Notable Subcategories</h2> | |
57 | 58 | <ul> |
58 | 59 | {% for subcat in subcats %} |
59 | - <li>{{ subcat["subcategory"] }}</li> | |
60 | + <li>{{ subcat["subcategory"] }} ({{ subcat["kind"] }})</li> | |
60 | 61 | {% endfor %} |
61 | 62 | </ul> |
62 | -{% endif %} | |
63 | - | |
64 | -<h2>Derived Categories</h2> | |
65 | -{% set birel = sql("select internal_relations from bicategories_of_relations where parent = ?", [name]) %} | |
66 | -{% if birel %} | |
67 | -<p>The bicategory-of-relations construction yields the category {{ birel[0]["internal_relations"] }}</p> | |
68 | -{% endif %} | |
69 | -{% set mon = sql("select * from categories_of_monoids where parent = ?", [name]) %} | |
70 | -{% if mon %} | |
71 | -<p>The internal monoids form the category {{ mon[0]["internal_monoids"] }}</p> | |
72 | -{% endif %} | |
73 | -{% set cmon = sql("select * from categories_of_commutative_monoids where parent = ?", [name]) %} | |
74 | -{% if cmon %} | |
75 | -<p>The internal commutative monoids form the category {{ cmon[0]["internal_commutative_monoids"] }}</p> | |
63 | +{% else %} | |
64 | +<p>({{ name }} doesn't seem to have any notable subcategories.)</p> | |
76 | 65 | {% endif %} |
77 | 66 | |
78 | 67 | <h2>Limits</h2> |
@@ -7,14 +7,14 @@ | ||
7 | 7 | |
8 | 8 | <h1>Category of Simplicial Objects: {{ sscat }}</h1> |
9 | 9 | |
10 | -<p>{{ sscat }} is a full subcategory of {{ cat }} whose objects are all | |
11 | -internal simplicial objects. A simplicial object in {{ cat }} is a | |
12 | -contravariant functor from Δ to {{ cat }}, so the category of simplicial | |
13 | -objects is a contravariant functor category:</p> | |
10 | +<p>{{ sscat }} is a contravariant functor category from Δ to {{ cat }}:</p> | |
14 | 11 | |
15 | 12 | <div class="bigmath"> |
16 | 13 | {{ sscat }} ≅ [Δ°, {{ cat }}] |
17 | 14 | </div> |
18 | 15 | |
16 | +<p>The objects of {{ sscat }} are traditionally called "simplicial objects", | |
17 | +and {{ sscat }} is a category of simplicial objects.</p> | |
18 | + | |
19 | 19 | {{ super() }} |
20 | 20 | {% endblock %} |
@@ -0,0 +1,39 @@ | ||
1 | +{% extends "default:row.html" %} | |
2 | + | |
3 | +{% block content %} | |
4 | + | |
5 | +{% set v2cat = display_rows[0]["vertical_2cat"] %} | |
6 | +{% set h2cat = display_rows[0]["horizontal_2cat"] %} | |
7 | +{% set squares = display_rows[0]["2cells_hr"] %} | |
8 | +{% set vrow = sql( | |
9 | +"select objects_hr, arrows_hr from categories where name = ?", [v2cat])[0] %} | |
10 | +{% set hrow = sql( | |
11 | +"select objects_hr, arrows_hr from categories where name = ?", [h2cat])[0] %} | |
12 | +{% set vobjs = vrow["objects_hr"] %} | |
13 | +{% set varrs = vrow["arrows_hr"] %} | |
14 | +{% set hobjs = hrow["objects_hr"] %} | |
15 | +{% set harrs = hrow["arrows_hr"] %} | |
16 | + | |
17 | +{% set objs = vobjs if vobjs == hobjs else vobjs + " or " + hobjs %} | |
18 | + | |
19 | +<h1>Double Category: <u>{{ v2cat }}</u></h1> | |
20 | + | |
21 | +<p><u>{{ v2cat }}</u> is a double category assembled from the categories | |
22 | +{{ v2cat }} and {{ h2cat }}. Its objects are {{ objs }}, its horizontal | |
23 | +arrows are {{ harrs }}, its vertical arrows are {{ varrs }}, and its | |
24 | +squares are {{ squares }}. As with all double categories, we may transpose | |
25 | +horizontal and vertical arrows to obtain another double category.</p> | |
26 | + | |
27 | +<p>The horizontal and vertical 2-category functors send <u>{{ v2cat }}</u> to | |
28 | +the 2-categories {{ h2cat }} and {{ v2cat }} respectively, augmented with | |
29 | +{{ squares }} for 2-cells:</p> | |
30 | + | |
31 | +<div class="bigmath"> | |
32 | + 𝓗(<u>{{ v2cat }}</u>) ≅ {{ h2cat }} | |
33 | + <br /> | |
34 | + 𝓥(<u>{{ v2cat }}</u>) ≅ {{ v2cat }} | |
35 | +</div> | |
36 | + | |
37 | +{{ super() }} | |
38 | +{% endblock %} | |
39 | + |
@@ -12,5 +12,8 @@ | ||
12 | 12 | {{ sub }} has only some of the objects of {{ sup }}, but all of the |
13 | 13 | arrows.</p> |
14 | 14 | |
15 | +<p>In terms of stuff, structure, and properties, objects of {{ sub }} are like | |
16 | +objects of {{ sup }} but with extra properties.</p> | |
17 | + | |
15 | 18 | {{ super() }} |
16 | 19 | {% endblock %} |
@@ -0,0 +1,35 @@ | ||
1 | +{% extends "default:row.html" %} | |
2 | + | |
3 | +{% block content %} | |
4 | + | |
5 | +{% set subcat = display_rows[0]["subcategory"] %} | |
6 | +{% set supercat = display_rows[0]["supercategory"] %} | |
7 | +{% set reflector = display_rows[0]["reflector_hr"] %} | |
8 | +{% set reflection = display_rows[0]["reflection_hr"] %} | |
9 | + | |
10 | +<h1>Reflective Subcategory: {{ subcat }}</h1> | |
11 | + | |
12 | +<p>{{ subcat }} is a reflective subcategory of {{ supercat }}, by which we | |
13 | +mean that {{ subcat }} is a full subcategory whose inclusion functor has | |
14 | +a left adjoint. The inclusion functor i is called the <dfn>reflection</dfn> | |
15 | +and the left adjoint is called the <dfn>reflector</dfn>.</p> | |
16 | + | |
17 | +{% if reflector %} | |
18 | +<p>Reflectors tend to be meaningful, and in this case, the functor which | |
19 | +reflects {{ supercat }} to {{ subcat }} is called the | |
20 | +<em>{{ reflector }} functor</em> of {{ supercat }}.</p> | |
21 | +{% endif %} | |
22 | + | |
23 | +{% if reflection %} | |
24 | +<p>Similarly, reflections tend to be meaningful too, and in this case, the | |
25 | +functor which includes {{ subcat }} into {{ supercat }} is called the | |
26 | +<em>{{ reflection }} functor</em> of {{ subcat }}.</p> | |
27 | +{% endif %} | |
28 | + | |
29 | +<p>In terms of stuff, structure, and properties, objects of {{ supercat }} are like | |
30 | +objects of {{ subcat }} but with extra stuff; this is the reflection of the | |
31 | +fact that, because {{ subcat }} is a full subcategory, objects of {{ subcat }} | |
32 | +are like objects of {{ supercat }} but with extra properties.</p> | |
33 | + | |
34 | +{{ super() }} | |
35 | +{% endblock %} |
@@ -8,16 +8,9 @@ | ||
8 | 8 | <h1>Restriction Categories: {{ parcat }}</h1> |
9 | 9 | |
10 | 10 | <p>{{ parcat }} is a restriction category; its arrows are partial maps and it |
11 | -contains {{ subcat }} as a subcategory with total maps.</p> | |
12 | - | |
13 | -<p>There is a functor from restriction categories to categories:</p> | |
14 | - | |
15 | -<div class="bigmath"> | |
16 | - Total : RCat → Cat | |
17 | -</div> | |
18 | - | |
19 | -<p>There are many subcategories, but only {{ subcat }} is the total | |
20 | -subcategory of {{ parcat }}:</p> | |
11 | +contains {{ subcat }} as a subcategory with total maps. There are many | |
12 | +subcategories, but only {{ subcat }} is the total subcategory of | |
13 | +{{ parcat }}:</p> | |
21 | 14 | |
22 | 15 | <div class="bigmath"> |
23 | 16 | Total({{ parcat }}) ≅ {{ subcat }} |
@@ -0,0 +1,38 @@ | ||
1 | +{% extends "default:table.html" %} | |
2 | + | |
3 | +{% block content %} | |
4 | + | |
5 | +<h1>Double Categories</h1> | |
6 | + | |
7 | +<p>A double category is a generalized 2-category. A 2-category has objects, | |
8 | +arrows, and natural transformations; arrows have one type of composition, but | |
9 | +natural transformations have two types of composition, vertical and horizontal | |
10 | +composition. A double category has two types of arrows, vertical and | |
11 | +horizontal arrows, as well as natural transformations.</p> | |
12 | + | |
13 | +<p>Every 2-category can be regarded as a double category with only one type of | |
14 | +arrow. Similarly, every category can be regarded as a double category with | |
15 | +only one type of arrow, using commuting squares of arrows for natural | |
16 | +transformations. Every category's slice and coslice categories can be paired | |
17 | +to form a double category.</p> | |
18 | + | |
19 | +<p>By the Macrocosm Principle, there is a category DblCat whose objects are | |
20 | +double categories and arrows are double functors; this is the category of | |
21 | +internal categories in Cat. There are two functors which designate the | |
22 | +2-categories resulting from restricting the vertical and horizontal arrows | |
23 | +respectively to identities; they are known as the horizontal and vertical | |
24 | +2-categories.</p> | |
25 | + | |
26 | +<div class="bigmath"> | |
27 | + 𝓗, 𝓥 : DblCat → 2Cat | |
28 | +</div> | |
29 | + | |
30 | +<p>There are several common constructions for double categories which are | |
31 | +included from other tables:</p> | |
32 | + | |
33 | +<ul> | |
34 | + <li>Every restriction category gives a double category.</li> | |
35 | +</ul> | |
36 | + | |
37 | +{{ super() }} | |
38 | +{% endblock %} |
@@ -8,7 +8,7 @@ | ||
8 | 8 | There are several special cases:</p> |
9 | 9 | |
10 | 10 | <ul> |
11 | - <li>Categories of simplicial objects are full.</li> | |
11 | + <li>Reflective subcategories are full.</li> | |
12 | 12 | </ul> |
13 | 13 | |
14 | 14 | {{ super() }} |
@@ -0,0 +1,29 @@ | ||
1 | +{% extends "default:row.html" %} | |
2 | + | |
3 | +{% block content %} | |
4 | + | |
5 | +<h1>Restriction Categories</h1> | |
6 | + | |
7 | +<p>A restriction category is a category with a restriction operator which | |
8 | +restricts each arrow to a subdomain. By analogy, the original category's | |
9 | +arrows are partial, but the arrows of the subcategory obtained by restricting | |
10 | +every arrow are total.</p> | |
11 | + | |
12 | +<p>The restriction operator extends to a functor from restriction categories | |
13 | +to categories:</p> | |
14 | + | |
15 | +<div class="bigmath"> | |
16 | + Total : RCat → Cat | |
17 | +</div> | |
18 | + | |
19 | +<p>Additionally, every restriction category forms a double category whose | |
20 | +vertical arrows are the original partial arrows and horizontal arrows are the | |
21 | +restricted total arrows. This construction also extends to a functor from | |
22 | +restriction categories to double categories:</p> | |
23 | + | |
24 | +<div class="bigmath"> | |
25 | + Dc : RCat → DblCat | |
26 | +</div> | |
27 | + | |
28 | +{{ super() }} | |
29 | +{% endblock %} |