Rev. | f28dba5473738200e2da5bf158e715871acc33cc |
---|---|
Tamaño | 1,587 octetos |
Tiempo | 2008-11-13 23:15:05 |
Autor | iselllo |
Log Message | I generalized and made more tunable the formula to calculate the eta factors (now there is also an exponent involved). |
#! /usr/bin/env python
import scipy as s
import numpy as n
import pylab as p
#from rpy import r
import distance_calc as d_calc
import igraph as ig
box_size=10000. #the box is now LARGE
threshold=1.06 #threshold to consider to particles as directly connected
test_arr=p.load("cluster_10_monomers")
x_pos=test_arr[:,0]
y_pos=test_arr[:,1]
z_pos=test_arr[:,2]
dist_mat=d_calc.distance_calc(x_pos,y_pos,z_pos, box_size)
#print "dist_mat is, ", dist_mat
p.save("dist_mat.dat", dist_mat)
adjacency=s.where(dist_mat <= threshold, 1, 0)
#print "adjacency is, ", adjacency
p.save("adjacency.csv", adjacency, delimiter=",")
p.save("adjacency.dat", adjacency)
cluster_obj=ig.Graph.Adjacency((dist_mat <= threshold).tolist(),\
ig.ADJ_UNDIRECTED)
# Now I start the calculation of the coordination number
coord_list=cluster_obj.degree() #Now I have a list with the number of 1rst
#neughbors of each particle
coord_arr=s.asarray(coord_list) -2
print "coord_arr is, ", coord_arr
print "the coordination number is, ", coord_arr.mean()
p.save("neighbor_list.dat", coord_arr)
cluster_obj.simplify()
clustering=cluster_obj.clusters()
n_clusters=len(clustering)
print "the total number of clusters is,", n_clusters
def eta_0_calc(coord_numbers, n):
eta_0=1.-(coord_numbers/12.)**(1./n)
return eta_0
def eta_1_calc(coord_numbers,n):
eta_1=1.-(coord_numbers/12.)**(1./n)
return eta_1
my_exp=4.
eta_0=eta_0_calc(coord_arr, my_exp)
eta_1=eta_1_calc(coord_arr, my_exp)
p.save("eta_0", eta_0)
p.save("eta_1", eta_1)
print "So far so good"