Rev. | 8f80def58fb25e3c117d63fa251bac5fe5fa4db8 |
---|---|
Tamaño | 25,543 octetos |
Tiempo | 2009-01-20 03:05:19 |
Autor | iselllo |
Log Message | Now the code reads most of the parameters from an input data file (apart from the monomers radia).
|
#! /usr/bin/env python
import scipy as s
import numpy as n
import pylab as p
import csv
#import absorbe as abso #compiled fortran code for detecting molecule-to-gas collisions
import absorbe_snap as absnap #compiled fortran code for detecting molecule-to-gas collisions
#! /usr/bin/env python
import scipy as s
import csv
def read_input(filename):
param_name_list=[]
param_value_list=[]
reader = csv.reader(open(filename, 'r'), delimiter = ',')
line = 0
# I changed the two following lines into comments since I do not have a header I should skip
#IndexHeader = reader.next()
#line = line+1
for line in reader:
#print line
param_name, param_value = line[0], line[1]
param_name_list.append(param_name)
param_value_list.append(float(param_value))
#print "param_name_list is, ", param_name_list
#print "param_name_list is, ", param_value_list
param_arr=s.asarray(param_value_list)
#print "param_arr is, ", param_arr
#print "param_name_list[2] is, ", param_name_list[2]
return param_arr
def evolve_by_time_step(amplitude,t_step,N_part,L,pos_at_t):
# amplitude=self.amplitude
# t_step=self.t_step
# N_part=self.N_part
# L=self.L
pos_at_t_plus_delta_t=pos_at_t+s.sqrt(amplitude*t_step)*s.random.normal(0.,1.,(3*N_part))
pos_at_t_plus_delta_t=s.remainder(pos_at_t_plus_delta_t,L) #always fold into the box!!!
return pos_at_t_plus_delta_t
def evolution_and_absorption(monomer_pos,number_monomers,amplitude,t_step,\
N_part,L, pos_at_t,r1_arr,ini_coll_mat):
# amplitude=self.amplitude
# t_step=self.t_step
# N_part=self.N_part
# L=self.L
# monomer_positions=self.monomer_positions
# number_monomers=self.number_monomers
# r1_arr=self.r1_arr
n_iter=int(round(t_fin/t_step))
#my_mod=int(round(t_fin/t_step))/10
save_every=n_iter/number_save
#print "N_iter is, ", n_iter
#print "r1_arr is, ", r1_arr
for i in xrange(n_iter):
if ((s.remainder(i,save_every) == 0) & (i>0) ):
print "i is, ", i
#print "monomer_pos are, ", monomer_pos[:,0]
#print "r1_arr is, ", r1_arr
if (i==0):
results=absnap.absorption_snap_calc(pos_at_t, monomer_pos[:,0], \
monomer_pos[:,1], \
monomer_pos[:,2], r1_arr, i, ini_coll_mat)
results_temp=s.copy(results)
# p.save("results_temp.dat", s.transpose(results_temp))
# print "saved results_temp"
elif (i !=0):
# if (i == 1):
# p.save("results_temp_1.dat", s.transpose(results_temp))
#print "saved results_temp"
# if (i == 15):
# p.save("results_temp_15.dat", s.transpose(results_temp))
#print "saved results_temp"
results=absnap.absorption_snap_calc(pos_at_t, monomer_pos[:,0], \
monomer_pos[:,1], \
monomer_pos[:,2], r1_arr, i, results_temp)
results_temp=s.copy(results)
# if (i == 14):
# p.save("results_temp_14_updated.dat", s.transpose(results_temp))
# absnap.absorption_snap_calc(initial_pos, monomer_pos[:,0], \
# monomer_pos[:,1], \
# monomer_pos[:,2], mon_rad, k, test1)
#print "results is ,", results
pos_at_t=evolve_by_time_step(amplitude,t_step,N_part,L,pos_at_t)
#print "pos.max(), pos.min() are now, ", pos_at_t.max(), pos_at_t.min()
#print "pos.mean(), pos.std() are now, ", pos_at_t.mean(), pos_at_t.std()
#print "pos_at_t is, ", pos_at_t
return results
def evolution_and_absorption_intermediate_save(monomer_pos,number_monomers,amplitude,t_step,\
N_part,L, pos_at_t,r1_arr,ini_coll_mat, number_save):
n_iter=int(round(t_fin/t_step))
save_every=n_iter/number_save
snap_num=0
for i in xrange(n_iter):
if (i==0):
results=absnap.absorption_snap_calc(pos_at_t, monomer_pos[:,0], \
monomer_pos[:,1], \
monomer_pos[:,2], r1_arr, i, ini_coll_mat)
results_temp=s.copy(results)
elif (i !=0):
temp=1 #which means I am now saving temporary files during the evolution
results=absnap.absorption_snap_calc(pos_at_t, monomer_pos[:,0], \
monomer_pos[:,1], \
monomer_pos[:,2], r1_arr, i, results_temp)
results_temp=s.copy(results)
if ((s.remainder(i,save_every) == 0) & (i>0) ):
snap_num=snap_num + 1
print "saving snapshot number , ", snap_num
#Now save the intermediate results
abso_temp=absorption_individual_monomers(number_mon,results,time, temp, snap_num )
stat_coll=stat_collisions(results, time, 0)
prefix="temp_%01d"%snap_num
filename="_collision_statistics.dat"
filename=prefix+filename
p.save(filename,stat_coll )
#Now we perform some statistical analysis of the data
number_molecules_vs_time=count_molecules(results,N_part,stat_coll, t_step)
filename="_number_molecules_vs_time.dat"
filename=prefix+filename
p.save(filename,number_molecules_vs_time)
p.save("intermediate_mol_position.dat",pos_at_t )
p.save("intermediate_time.dat",(t_step*i*s.ones(1)) )
pos_at_t=evolve_by_time_step(amplitude,t_step,N_part,L,pos_at_t)
return results
def absorption_individual_monomers(number_mon,new_abso,time, temp, snap_num):
for m in xrange(number_mon):
abso_mon=select_absorption(new_abso,(m+1)) #careful about the m+1 appearing in several places:
#it comes from
# the fortran routine way of labelling the molecules
if (temp ==1):
prefix="temp_%01d"%snap_num
filename="_abso_%01d"%(m+1)
filename=prefix+filename
elif (temp != 1):
filename="abso_%01d"%(m+1)
filename=filename+".dat"
p.save(filename,abso_mon )
stat_coll=stat_collisions(abso_mon, time, 0)
if (temp == 1):
prefix="temp_%01d"%snap_num
filename="_collision_statistics_%01d"%(m+1)
filename=prefix+filename
elif (temp !=1):
filename="collision_statistics_%01d"%(m+1)
filename=filename+".dat"
p.save(filename,stat_coll )
return 0
class initialize_system:
def __init__(self, L,N_part):
self.L=L
self.N_part=N_part
def results_ini(self):
results=-s.ones((2,N_part), dtype=int )
return results
def place_molecules(self):
molecule_pos=s.random.uniform(0.0, L,(N_part,3) )
molecule_pos=s.reshape(molecule_pos,(N_part,3)) #randomly located particles in a box
return molecule_pos
def place_molecules_new(self):
molecule_pos=s.random.uniform(0.0, L,(N_part*3) )
#molecule_pos=s.reshape(molecule_pos,(N_part,3)) #randomly located particles in a box
return molecule_pos
def single_sphere(self, radius):
if (round(radius/L)!= 0.0):
print "error in choosing box size"
sphere_pos=s.ones((1,3))*L/2.
return sphere_pos
def two_spheres(self, radius):
my_ratio=radius/L
my_ratio=my_ratio.astype("int")
if (my_ratio.any() != 0.0):
print "error in choosing box size"
sphere_pos=s.ones((2,3))*L/2.
sphere_pos[0,0]=L/2.-radius[0]
sphere_pos[1, :]=sphere_pos[0, :]
sphere_pos[1, 0]=L/2.+radius[1] #this makes the system more symmetric
return sphere_pos
#I should have a box in 3D and generate a Wiener process for many particles in 3D
class particle_3D: #class needed to generate a single Brownian trajectory
def __init__(self, ini_pos):
self.ini_pos=ini_pos #a 3x1 array with the initial particle position
def trajectory_in_box(self, L, t_fin, amplitude, t_step):
ini_pos=self.ini_pos
N_steps=int(t_fin/t_step)+1
rand=s.sqrt(amplitude*t_step)*s.random.normal(0.,1.,(3*N_steps))
rand=s.reshape(rand, (N_steps,3))
rand[0,:]=0.
trajectory=s.zeros((N_steps,3))
#trajectory=s.cumsum(rand,axis=1) +ini_pos
trajectory[:,0]=s.cumsum(rand[:,0])+ini_pos[0]
trajectory[:,1]=s.cumsum(rand[:,1])+ini_pos[1]
trajectory[:,2]=s.cumsum(rand[:,2])+ini_pos[2]
#fold trajectory into the box
trajectory=s.remainder(trajectory, L)
return trajectory
#Now a derived class to deal with many trajectories
class many_particles_3D(particle_3D): #this way all the methods of the
#class to generate a single trajectory are made
#available here
def __init__(self, N_part, ini_pos):
self.N_part=N_part
self.ini_pos=ini_pos
#self.val= val #this will contain the molecule trajectories
def generate_N_particles(self,L, t_fin, amplitude, t_step):
global collect_trajectories
#I iterate the result of using the previous class
ini_pos=self.ini_pos
N_part=self.N_part
collect_trajectories=s.zeros(((int(t_fin/t_step)+1), (3*N_part))) #array containing
#many stochastic trajectories
for i in xrange(N_part):
my_part=particle_3D(ini_pos[i,:])
#I now iterate the calls to the class generating a single stochastic trajectory
my_trajectory=my_part.trajectory_in_box(L, t_fin, amplitude, t_step)
collect_trajectories[: ,(3*i):(3*i+3)]=my_trajectory[: ,0:3]
return collect_trajectories
def generate_N_particles_no_save(self,L, t_fin, amplitude, t_step):
#Same as the class above, but the generated stochastic trajectories are NOT
#stored in a global variable. Hence I call this method only from another method to
#save memory if I need to do some work with the stochastic trajectories but I do not
#want to store them in memory forever.
#I iterate the result of using the previous class
ini_pos=self.ini_pos
N_part=self.N_part
collect_trajectories=s.zeros(((int(t_fin/t_step)+1), (3*N_part)))
for i in xrange(N_part):
print "generating particle trajectory number ", i
my_part=particle_3D(ini_pos[i,:])
my_trajectory=my_part.trajectory_in_box(L, t_fin, amplitude, t_step)
collect_trajectories[: ,(3*i):(3*i+3)]=my_trajectory[: ,0:3]
p.save("trajectory_no_save.dat",collect_trajectories )
return collect_trajectories
def mean_on_trajectories(self):
mean_arr=s.zeros(((int(t_fin/t_step)+1),3))
sel_arr=s.arange(N_part)
mean_arr[:,0]=s.mean(collect_trajectories[:,(sel_arr*3)], axis=1)
mean_arr[:,1]=s.mean(collect_trajectories[:,(sel_arr*3+1)], axis=1)
mean_arr[:,2]=s.mean(collect_trajectories[:,(sel_arr*3+2)], axis=1)
return mean_arr
def var_on_trajectories(self):
var_arr=s.zeros(((int(t_fin/t_step)+1),3))
sel_arr=s.arange(N_part)
var_arr[:,0]=s.var(collect_trajectories[:,(sel_arr*3)], axis=1)
var_arr[:,1]=s.var(collect_trajectories[:,(sel_arr*3+1)], axis=1)
var_arr[:,2]=s.var(collect_trajectories[:,(sel_arr*3+2)], axis=1)
return var_arr
def absorption(self,L, t_fin, amplitude,\
monomer_positions,mon_radius, t_step, read, fold):
x_arr=monomer_pos[:,0]
y_arr=monomer_pos[:,1]
z_arr=monomer_pos[:,2]
if (read==0):
trajectories=self.generate_N_particles_no_save(L, t_fin, amplitude, t_step)
elif (read==1):
trajectories=n.loadtxt("random_list")
if (fold == 1): #In this case I need to fold
trajectories=s.remainder(trajectories,L)
my_results=abso.absorption_calc(trajectories, x_arr, y_arr, z_arr, mon_radius)
#print "the shape if my_results is, ", s.shape(my_results)
#print "the min is, ", min(my_results.ravel())
#my_results[:,0]=my_results[:,0]*t_step
p.save("absorption.dat", my_results)
p.save("absorption_transposed.dat",s.transpose(my_results))
return my_results
def stat_collisions(collisions, time, save_time):
myt_step=time[2]-time[1] #detect the time step directly from the time array
print "myt_step is, ", myt_step
collision_times=collisions[0,:]
sel=s.where(collision_times>0.) #get rid of the collisions taking place at t=0
#(molecules initially overlapping with monomers) and of the trajectories never leading
#to collisions (an initially absorbed molecule is detected in the first
#step (k=1) in the loop, hence I need to get rid of absorption "times"
#smaller than 1)
# p.save("time[sel].dat", time[sel] )
collision_time_sel=collision_times[sel]
#print "collision_sel is, ", collision_sel
#print "len(collision_sel) is, ", len(collision_sel)
#Check carefully this bit!!!!
#t_sorted=s.sort(time[collision_sel]) #hence read only the meaningful times
t_sorted=s.sort(collision_time_sel) #hence read only the meaningful times
t_sorted_uni=n.unique1d(t_sorted) #in case I have several collisions at the same time
t_sorted_uni=t_sorted_uni
if (save_time==1):
p.save("t_sorted_uni.dat", t_sorted_uni*t_step) #I need to multiply the time by t_step in
#order to get the time array in the proper units
#count how many collisions I have each time step
r_bound=t_sorted.searchsorted(t_sorted_uni,side='right')
l_bound=t_sorted.searchsorted(t_sorted_uni,side='left')
coll_per_time_step=r_bound-l_bound
print "the total number of collisions is, ", coll_per_time_step.sum()
results=s.zeros((len(t_sorted_uni),2))
results[:,0]=t_sorted_uni*t_step #no need to do anything here, I already have
#time
#again, I had to multiply by t_step above in order to get the time in the right units
results[:,1]=coll_per_time_step
return results
#Now I count the number of molecules in the system at each time step
def count_molecules(collisions,N_part,results_on_collisions, t_step):
collision_times=collisions[0,:]
#print "collision_times is, ", collision_times
sel=s.where(collision_times==0) #get rid of the collisions taking place at t=0
#from the raw data about the collisions, I get rid of the trajectories
#starting with immediate absorption
N_ini=N_part-len(sel[0]) #initial number of molecules (without those
#immediately absorbed)
print "N_ini is, ", N_ini
N_save=s.array([N_ini])
p.save("effective_initial_number_molecules.dat", N_save )
N_part_vs_time=s.ones((len(results_on_collisions)+1))*N_ini #array with the
#number of molecules vs time (just initialized here)
coll_per_time_step=results_on_collisions[:,1]
#array telling how many collisions I have at each time step when
#one or more collisions are recorded.
#This array comes from the output of stat_collisions(collisions, time)
#print "coll_per_time_step is, ", coll_per_time_step
count_coll=s.ones(len(results_on_collisions))
#print "len(results_on_collisions) is, ", len(results_on_collisions)
N_part_vs_time[1:]=N_ini-s.cumsum(coll_per_time_step) #subtract a molecule for
#every collision event
#print "len(N_part_vs_time) is, ", len(N_part_vs_time)
#Now return time and the number of molecules vs time.
results=s.zeros((len(N_part_vs_time),2))
results[1:,0]=results_on_collisions[:,0]
results[:,1]=N_part_vs_time
return results
def select_absorption(new_abso,sel_monomer): #function to extract info about a specific monomer
select_monomer_collisions=s.where(new_abso[1,:]==sel_monomer)
monomer_collisions=s.zeros((2,len(select_monomer_collisions[0])))
monomer_collisions[0,:]=new_abso[0,select_monomer_collisions]
monomer_collisions[1,:]=new_abso[1,select_monomer_collisions]
return monomer_collisions
# def absorption(monomer_positions,mon_radius, t_step, trajectories ):
# x_arr=monomer_pos[:,0]
# y_arr=monomer_pos[:,1]
# z_arr=monomer_pos[:,2]
# my_results=abso.absorption_calc(trajectories, x_arr, y_arr, z_arr, mon_radius)
# return my_results
#######################################################################
#######################################################################
#######################################################################
#######################################################################
# L=3.
# t_fin=20.
# t_step=0.001
# amplitude=2.
# N_part=30000
# number_mon=2 #indicate the number of monomers
# mon_rad=s.ones(number_mon)*0.5
input_arr=read_input("input.csv")
#print "input_arr is, ", input_arr
L=input_arr[0]
#print "L is, ", L
t_ini=input_arr[1]
t_fin=input_arr[2]
t_step=input_arr[3]
N_part=int(round(input_arr[4]))
number_mon=int(round(input_arr[5]))
number_save=int(round(input_arr[6])) #how many intermediate results I am supposed to save
read_ini_pos=int(round(input_arr[7])) #whether I should read the initial position of the molecules \
# from another simulation or not
read_radia=int(round(input_arr[8])) #whether I should read the list of the radia of the monomers from a file
if (read_radia == 1):
mon_rad=p.load("radia.csv", delimiter=",")
amplitude=input_arr[9]
#I do not need that any longer since I am now using the code in a different way
#fold=1 #whether I should fold the trajectories inside the box or they have already been saved that way
savetime=1 #whether I should save the collision times expliticitely in a file or now
print "amplitude is, ", s.sqrt(amplitude*t_step)
time=s.linspace(0.,t_fin,(int(t_fin/t_step)+1) )
p.save("time.dat", time)
#I am no longe using the "read" parameter: the code no longer reads the trajectories to start with
#read=1 #it means that the code will read some already-generated trajectories
# rather than calculate them on the fly
#First I need to initialize the system
initialization=initialize_system(L, N_part) #give box size and number of molecules
initial_pos=initialization.place_molecules() #place the molecules within the box
#Now place a single sphere at the centre of the box
if (number_mon == 1):
monomer_pos=initialization.single_sphere(mon_rad)
#or two of them, with one in the middle
elif (number_mon == 2):
monomer_pos=initialization.two_spheres(mon_rad)
print "monomer_pos is ", monomer_pos
# my_particles=many_particles_3D(N_part,initial_pos)
# new_abso=my_particles.absorption(L, t_fin, amplitude,\
# monomer_pos,mon_rad, t_step, read, fold )
#I replace the bits above with the new evolution of the system
coll_matrix_ini=initialization.results_ini()
test1=s.copy(coll_matrix_ini)
print "coll_matrix_ini is, ", coll_matrix_ini
print "OK here"
#evolution_contained=new_evolution( L,N_part, monomer_pos, \
# amplitude, t_step, t_fin,mon_rad, number_mon)
print "OK here 2"
initial_pos=initialization.place_molecules_new() #place the molecules within the box
print "initial_pos.mean() is, ", initial_pos.mean()
print "initial_pos.max() and min are, ", initial_pos.max(), initial_pos.min()
# print "initial_pos is, ", initial_pos
# initial_pos=evolve_by_time_step(amplitude,t_step,N_part,L,initial_pos)
# print "initial_pos is, ", initial_pos
# k=0
# print "test1 is, ", test1
# test1=absnap.absorption_snap_calc(initial_pos, monomer_pos[:,0], \
# monomer_pos[:,1], \
# monomer_pos[:,2], mon_rad, k, test1)
# print "test1 is, ", test1
# print "OK after test1"
#new_abso=evolution_and_absorption(monomer_pos,number_mon,amplitude,t_step,\
# N_part,L, initial_pos,mon_rad ,coll_matrix_ini)
new_abso=evolution_and_absorption_intermediate_save(monomer_pos,number_mon,amplitude,t_step,\
N_part,L, initial_pos,mon_rad,coll_matrix_ini, number_save)
print "OK after test2"
p.save("new_abso_test.dat", s.transpose(new_abso))
# new_abso=evolution_contained.evolution_and_absorption(initial_pos,coll_matrix_ini)
#####################################################################
#####################################################################
#####################################################################
#####################################################################
#####################################################################
# The following part does not need any changing, since it deals with the absorption
#statistics
#Now carry out an iteration on all the monomers
for m in xrange(number_mon):
abso_mon=select_absorption(new_abso,(m+1)) #careful about the m+1 appearing in several places: it comes from
# the fortran routine way of labelling the molecules
filename="abso_%01d"%(m+1)
filename=filename+".dat"
p.save(filename,abso_mon )
stat_coll=stat_collisions(abso_mon, time, 0)
filename="collision_statistics_%01d"%(m+1)
filename=filename+".dat"
p.save(filename,stat_coll )
print "new_abso is ok!"
#p.save("absorption_data.dat", new_abso)
stat_coll=stat_collisions(new_abso, time, savetime)
p.save("collision_statistics.dat",stat_coll )
#Now we perform some statistical analysis of the data
number_molecules_vs_time=count_molecules(new_abso,N_part,stat_coll, t_step)
p.save("number_molecules_vs_time.dat",number_molecules_vs_time)
fig = p.figure()
axes = fig.gca()
axes.plot(number_molecules_vs_time[:,0],number_molecules_vs_time[:,1],"ro",linewidth=2.)
# axes.plot(time,(mean_stat[:,1]-L/2.),"k+",\
# label="<y>")
# axes.plot(time,(mean_stat[:,2]-L/2.),"mx",\
# label="<z> ",linewidth=2.)
p.xlabel('Time')
p.ylabel('Number of Molecules')
p.savefig("number_molecules_vs_time.pdf")
p.clf()
fig = p.figure()
axes = fig.gca()
axes.plot(stat_coll[:,0],stat_coll[:,1],"ro",linewidth=2.)
# axes.plot(time,(mean_stat[:,1]-L/2.),"k+",\
# label="<y>")
# axes.plot(time,(mean_stat[:,2]-L/2.),"mx",\
# label="<z> ",linewidth=2.)
p.xlabel('Time')
p.ylabel('Collisions')
p.savefig("collisions_vs_time.pdf")
p.clf()
#The following are just some tests which I commented out.
# initial_pos=s.ones((N_part,3))*L/2.
# my_particles=many_particles_3D(N_part,initial_pos)
# my_simu_trajectories=my_particles.generate_N_particles(L, t_fin, amplitude, t_step)
# print "the trajectories are, ", my_simu_trajectories
# p.save("trajectories.dat",my_simu_trajectories )
# abso_results=absorption(monomer_pos,mon_rad, t_step, my_simu_trajectories)
# print "abso_results is, ", abso_results
# p.save("absorption_data.dat", s.abso_results)
# mean_stat=my_particles.mean_on_trajectories()
# print "mean_stat is, ", mean_stat
# var_stat=my_particles.var_on_trajectories()
# print "var_stat is, ", var_stat
# print "collect_trajectories is, ", collect_trajectories
# fig = p.figure()
# axes = fig.gca()
# axes.plot(time,(mean_stat[:,0]-L/2.),"ro",\
# label="<x>",linewidth=2.)
# axes.plot(time,(mean_stat[:,1]-L/2.),"k+",\
# label="<y>")
# axes.plot(time,(mean_stat[:,2]-L/2.),"mx",\
# label="<z> ",linewidth=2.)
# p.xlabel('Time')
# p.ylabel('Mean position')
# p.savefig("mean_x_y_z.pdf")
# p.clf()
# fig = p.figure()
# axes = fig.gca()
# axes.plot(time,var_stat[:,0],"ro",\
# label="<delta x sq>",linewidth=2.)
# axes.plot(time,var_stat[:,1],"k+",\
# label="<delta y sq>")
# axes.plot(time,var_stat[:,2],"mx",\
# label="<delta z sq> ",linewidth=2.)
# p.xlabel('Time')
# p.ylabel('variance')
# p.savefig("var_x_y_z.pdf")
# p.clf()
# fig = p.figure()
# axes = fig.gca()
# axes.plot(time,(collect_trajectories[:,0]-L/2.),"ro",\
# label=" x",linewidth=2.)
# axes.plot(time,(collect_trajectories[:,1]-L/2.),"k+",\
# label="y")
# axes.plot(time,(collect_trajectories[:,2]-L/2.),"mx",\
# label="z ",linewidth=2.)
# p.xlabel('Time')
# p.ylabel('variance')
# p.savefig("individual_trajectories.pdf")
# p.clf()
print "So far so good"