Rev. | 1fc701cae23ea87cedfe9e1697ff025ae601168f |
---|---|
Tamaño | 13,809 octetos |
Tiempo | 2008-12-03 01:36:29 |
Autor | iselllo |
Log Message | I added a code which shows how to create your own personalized beamer style using some templates.
given by Eric Rasmusen. |
% Copyright 2007 by Till Tantau
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Public License.
%
% See the file doc/licenses/LICENSE for more details.
\documentclass{beamer}
%\newcommand{\ol}{\overline}
\renewcommand{\i}{\int}
\newcommand{\n}{\nabla}
\newcommand{\x}{\vec x\; }
\renewcommand{\d}{\dag}
\newcommand{\h}{\hat}
\newcommand{\p}{\partial}
\renewcommand{\v}{\vert}
\renewcommand{\l}{\langle}
\renewcommand{\r}{\rangle}
\newcommand{\f}{\frac}
\newcommand{\s}{\sum}
\newcommand{\lm}[1]{\lim_{#1\to\infty}}
% \renewcommand{\in}{\infty}
\newcommand{\rro}{\right)}
\newcommand{\lro}{\left( }
\newcommand{\lsq}{\left[}
\newcommand{\rsq}{\right]}
\newcommand{\rcu}{\right\}}
\newcommand{\lcu}{\left\{}
\newcommand{\be}{\begin{equation}}
\newcommand{\ee}{\end{equation}}
\newcommand{\bi}{\begin{itemize}}
\newcommand{\ei}{\end{itemize}}
\newcommand{\ben}{\begin{enumerate}}
\newcommand{\een}{\end{enumerate}}
\newcommand{\esp}{ESPResSo}
\newcommand{\jc}{{\it Journal of Colloid and Interface Science}}
\newcommand{\jas}{{\it Journal of Aerosol Science}}
\newcommand{\pra}{{\it Physical Review A}}
\newcommand{\prb}{{\it Physical Review B}}
\newcommand{\pre}{{\it Physical Review E}}
\newcommand{\prl}{{\it Physical Review Letters}}
%Fine preambolo
\newcommand{\unit}{\hat{\bf n}}
% \newcommand{\pol}{\hat{\bf e}}
\newcommand{\rv}{{\bf r}}
\newcommand{\Ev}{{\bf E}}
\newcommand{\Bv}{{\bf B}}
\newcommand{\Ec}{{\cal E}}
\newcommand{\Rc}{{\cal R}}
\newcommand{\Pc}{{\cal P}}
\newcommand{\Pcv}{\bbox {\cal P}}
\newcommand{\dv}{{\bf d}}
\newcommand{\Dc}{{\cal D}}
\newcommand{\Dcv}{\bbox {\cal D}}
\newcommand{\Hc}{{\cal H}}
\newcommand{\kappav}{\bbox \kappa}
\newcommand{\Dkappav}{\Delta {\bbox\kappa}}
\newcommand{\qv}{{\bf q}}
\newcommand{\kv}{{\bf k}}
\newcommand{\eo}{\epsilon_0}
\newcommand{\ej}{\epsilon_j}
\newcommand{\beq}{\begin{equation}}
\newcommand{\eeq}{\end{equation}}
\newcommand{\bea}{\begin{eqnarray}}
\newcommand{\eea}{\end{eqnarray}}
\newcommand{\up}{\uparrow}
\newcommand{\down}{\downarrow}
\newcommand{\<}{\langle}
\renewcommand{\>}{\rangle}
\renewcommand{\(}{\left(}
\renewcommand{\)}{\right)}
\renewcommand{\[}{\left[}
\renewcommand{\]}{\right]}
\newcommand{\dagg}{d_{\rm{agg}}}
\newcommand{\vagg}{V_{\rm{agg}}}
\newcommand{\nagg}{n_{\rm{agg}}}
\newcommand{\df}{d_{f}}
\newcommand{\ragg}{\rho_{\rm{agg}}}
\newcommand{\reff}{\rho_{\rm{eff}}}
\newcommand{\re}{{\rm{Re}}}
\newcommand{\pr}{{\rm{Pr}}}
\newcommand{\sh}{{\rm{Sh}}}
\newcommand{\Kn}{{\rm{Kn}}}
\newcommand{\ra}{{\rm{Ra}}}
\renewcommand{\sc}{{\rm{Sc}}}
\newcommand{\nusselt}{{\rm{Nu}}}
\newcommand{\magg}{m_{\rm{agg}}}
\newcommand{\tres}{\tau_{\rm{res}}}
\newcommand{\gdif}{{\gamma_{\rm{dif}}}}
\newcommand{\vdep}{{v_{\rm{dep}}}}
\newcommand{\gth}{{\gamma_{\rm{th}}}}
\newcommand{\vth}{{v_{\rm{th}}}}
% \newcommand{\tres}{{\tau_{\rm{res}}}}
\newcommand{\kt}{{K_{\rm{T}}}}
\newcommand{\kair}{{k_{\rm{air}}}}
\newcommand{\vdif}{{v_{\rm{dif}}}}
\newcommand{\kp}{{k_{\rm{p}}}}
\newcommand{\commentout}[1]{{}}
%\newcommand{\half}{\hbox}
% \newcommand{\half}{\hbox{$1\over2$}}
\newcommand{\nv}{{\vec\nabla}}
\renewcommand{\c}{{\cdot}}
\newcommand{\hv}{\harvarditem}
\renewcommand{\baselinestretch}{.9}
\definecolor{orange}{rgb}{1,0.5,0}
\definecolor{darkgreen}{rgb}{0,0.5,0}
\definecolor{mymagenta}{cmyk}{0,1.,0,0.2}
\definecolor{Brown}{cmyk}{0, 0.8, 1, 0.6}
\definecolor{Yellow}{rgb}{1, 1, 0}
\definecolor{Light}{gray}{.80}
\definecolor{Dark}{gray}{.20}
%
% DO NOT USE THIS FILE AS A TEMPLATE FOR YOUR OWN TALKS¡!!
%
% Use a file in the directory solutions instead.
% They are much better suited.
%
% Author, Title, etc.
\title[Modelling of diesel-engine exhaust nano-particle dynamics]
{%
Modelling of diesel-engine exhaust nanoparticle dynamics
%
}
\author[Isella, Drossinos]
{
Lorenzo~Isella\inst{},
Barouch Giechaskiel\inst{}
and
Yannis~Drossinos\inst{}
}
\institute[]
{
\inst{}%
Joint Research Centre, Ispra, Italy
}
\date{JRC Exploratory Research Symposium, December 2008}
%package for movies
\usepackage{movie15}
% Setup TikZ
% \usepackage{tikz}
% \usetikzlibrary{arrows}
% \tikzstyle{block}=[draw opacity=0.7,line width=1.4cm]
% Standard packages
\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
\usepackage{verbatim}
\usepackage{epsfig}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\newtheorem{thm}{Theorem}[section]
\setbeamercovered{dynamic}
% Setup appearance:
\usetheme{default}
\usefonttheme[onlylarge]{structurebold}
\setbeamersize{text margin left=.5cm}
\setbeamersize{text margin right=.5cm}
%\setbeamertemplate{headline}{}%
\setbeamertemplate{navigation symbols}{} %gets rid of navigation symbols
%\setbeamertemplate{footline}[page number]{} %gets rid of bottom navigation bars
\setbeamertemplate{itemize items}[circle]
\setbeamercolor{titlelike}{fg=blue}
\setbeamercolor{item}{fg=blue}
\setbeamertemplate{frametitle}{
\vspace{0.7cm}
\begin{centering}
{\Large \textbf{\textmd{\insertframetitle}}}
\par
\end{centering}
}
% The main document
\begin{document}
\usebackgroundtemplate{\includegraphics[width=\paperwidth]{back.pdf}}
\begin{frame}
\titlepage
\end{frame}
% \begin{frame}{Outline}
% \tableofcontents
% \end{frame}
\section{Introduction}
\subsection{Problem Formulation}
%\vspace*{0.3cm}
\begin{frame}[c]{Motivation and Goals}
\vspace*{-0.2cm}
\begin{itemize}
\item \textcolor{red}{Diesel-generated nanoparticles} raise concerns
about their effects on human health and
environment.
\item \textcolor{red}{Legislation} regulating diesel-vehicle particulate \textcolor{red}{mass}
emissions (EURO1,2,3,4,\emph{etc}\dots), but particle number
distributions may be a better metric (especially for health effects).
\item Evaluate \textcolor{red}{effect of sampling and experimental conditions}
on measured particle number distributions emitted from light/heavy duty vehicles $\Rightarrow$ \textcolor{red}{PMP}.
\item Exploratory research as an experimental and theoretical study of the
\textcolor{red}{dynamics of non-volatile (\textcolor{red}{PMP}) particles emitted from diesel
light-duty vehicles} (emphasis on nanoparticle agglomeration).
\item Experiments performed at the \textcolor{red}{Vehicle Emission LAboratories}
(VELA) at Ispra.
% \item Investigation of diesel-nanoparticle aggregate structure, collisions and
% mobility via \textcolor{red}{Langevin} simulations.
% \item Aerosol processes: \textcolor{red}{convection, agglomeration, thermophoretic and
% diffusional transport}
% \item Emitted agglomerates are \textcolor{red}{fractal} objects. How
% to estimate their fractal dimension from limited experimental information?
\end{itemize}
\end{frame}
\section{Overview of the Experiments}
\subsection{Exhaust-Particle Measurements}
%\vspace*{0.3cm}
\begin{frame}[t]{Experimental setup}
\vspace*{-.6cm}
\begin{center}
\includegraphics[width=8cm, height=6cm]{figure1.pdf}
\end{center}
\vspace*{-0.2cm}
\begin{itemize}
\item Temperature and particle-size distribution measurements along
\textcolor{red}{whole} experimental manifold (\textcolor{red}{not}
only at legislated position).
\end{itemize}
\end{frame}
\subsection{Number Distributions}
%\vspace*{0.3cm}
\begin{frame}[t]{Inlet and outlet experimental
number distributions: \\ { EURO 3 vehicle, 120km/h} }
\vspace*{-0.5cm}
\begin{center}
\rotatebox{90}{\includegraphics[width=5cm, height=8cm]{figure2_b.pdf}}
\end{center}
\vspace*{-0.6cm}
\begin{itemize}
% \item The experimental number distributions can be excellently
% approximated with analytical lognormal distributions.
\item \textcolor{red}{Lognormal} distribution
%\vspace*{-0.3cm}
\beq \nonumber
\begin{split}
dN^{\textrm{fit}} & {} =
\f{N_{\infty}} {\sqrt{2\pi}\log\sigma}\exp\lsq-\f{(\log d_{\rm agg}-\log\mu)^2}{2\log^2\sigma}\rsq d\log d_{\rm agg} \\
% & {} \equiv n_q (\log d_{\rm agg}) \, d \log d_{\rm agg}
\end{split}
\eeq
\vspace*{-0.2cm}
\item Compact way of representing the data: $N_{\infty}, \mu\;\; {\rm
and}\;\; \sigma $ \textcolor{red}{unambiguously} describe the experimental data.
% \item Pressure fluctuations $\Rightarrow$ higher uncertainty on the
% number concentration $N_\infty$ (\textcolor{red}{not} on $\mu$ and $\sigma$) at inlet than outlet.
\end{itemize}
\end{frame}
\section{Dynamics along transfer tube}
\subsection{1D model for aerosol dynamics}
%\vspace*{0.3cm}
\begin{frame}[t]{Aerosol in a Tube}
\vspace*{-0.5cm}
\begin{center}
\resizebox{10cm}{3cm}{\input{cylinder.pdf_t}}
%\includegraphics[width=8cm, height=4cm]{cylinder.pdf}
\end{center}
\begin{itemize}
\vspace*{-0.1cm}
\item Four different aerosol processes:
\textcolor{darkgreen}{agglomeration},
\textcolor{mymagenta}{diffusion},
\textcolor{Brown}{thermophoresis} and \textcolor{blue}{convection}.
%\vspace*{-0.1cm}
\item 1D model neglecting turbulence-induced local particle density
inhomogeneities.
\item \textcolor{red}{$n_q$} (flux-averaged axial aggregate
concentration of size $d_q$ [$q$-mer])
along tube as function
of \textcolor{red}{residence time} \textcolor{blue}{$\tau$}
\end{itemize}
\vspace*{-0.1cm}
\beq\nonumber
\;\;\,\f{d n_q(\textcolor{blue}{\tau})}{d\textcolor{blue}{\tau}}=-\f{2(\textcolor{mymagenta}{v_{\rm dif}}+\textcolor{Brown}{v_{\rm th}})}{
R}n_q(\textcolor{blue}{\tau})+
\f{1}{2}\sum_{i+j=q}\textcolor{darkgreen}{\mathcal{K}_{ij}}n_i(\textcolor{blue}{\tau})n_j(\textcolor{blue}{\tau}) - n_q(\textcolor{blue}{\tau})\sum_i\textcolor{darkgreen}{\mathcal{K}_{iq}}n_i(\textcolor{blue}{\tau}).
\eeq
% \item $n_q$ the mean (flux-averaged) axial aggregate concentration of size $d_q$
\end{frame}
%\vspace*{0.3cm}
\begin{frame}[t]{Time-Scales and Approximations}
%\vspace*{-0.45cm}
\begin{itemize}
\item Time-scales for each process: $\tau_{\rm agg}\simeq 2$s,
$\tau_{\rm dif}\simeq 10^{3}$s, $\tau_{\rm th}\simeq 30s$ and
$\tau_{\rm conv}\simeq 2$s.
\end{itemize}
\vspace*{-0.5cm}
\begin{center}
\includegraphics[width=8cm, height=5.5cm]{figure7_b.pdf}
\end{center}
\vspace*{-0.5cm}
\begin{itemize}
\item Effect of the transfer tube length on number concentration:
important for experiment \textcolor{red}{reproducibility}.
\item Different $\tau_{\rm agg}$ for a \textcolor{red}{light-duty} Euro4-5 diesel engine.
\end{itemize}
\end{frame}
\section{Simulation of soot aggregate formation}
\subsection{Model for Monomer Dynamics}
%\vspace*{0.3cm}
\begin{frame}[t]{Langevin Equation for Mesoscopic Systems}
\vspace*{-0.5cm}
\begin{center}
\resizebox{7cm}{4.5cm}{\input{brownian.pdf_t}}
%\includegraphics[width=8cm, height=4cm]{cylinder.pdf}
\end{center}
%\vspace*{-0.15cm}
\begin{itemize}
\item \textcolor{red}{3D} system of interacting monomers, each
obeying
%\vspace*{-0.2cm}
\begin{equation}
\label{eq:Langevin} \nonumber
m_1\ddot{\bf r}_i=\textcolor{red}{{\bf F}_i}-\beta_1 m_1\dot{\bf r}_i+
{\bf W}_i(t).
\end{equation}
\vspace*{-0.55cm}
\item Force acting on i-th monomer from \textcolor{red}{pairwise} monomer-monomer interaction potential
\vspace*{-0.25cm}
\begin{equation} \nonumber
\label{eq:potential_pairwise}
{\bf F}_i=-\nabla_{{\bf r}_i} U_i=-\f{\nabla_{{\bf r}_i}}{2}\lro\s_{j\neq i}u(r_{ij})\rro.
\end{equation}
\end{itemize}
\end{frame}
\subsection{Interaction Potential}
%\vspace*{0.3cm}
\begin{frame}[t]{Monomer-Monomer Interaction Potential}
%\vspace*{-0.5cm}
% \begin{block}{General Features}
%\vspace*{-0.4cm}
\begin{itemize}
\item \textcolor{red}{Repulsion} at short separations $r\le\sigma$
(hard-core repulsion) and \textcolor{red}{attraction} for separations above
$\sigma$
(sticking upon collision).
\item Simulations performed with two \textcolor{red}{radial} interaction potentials: integrated Lennard-Jones
potential (model for the attractive part of \textcolor{red}{Van der Waals}
interaction between two spheres, $\sim r^{-6}$ for $r\gg\sigma$) and with a short-ranged
\textcolor{red}{model potential}.
%\begin{itemize}
%\item Potential used in the simulations:
\end{itemize}
\vspace*{-.5cm}
\begin{figure}
\includegraphics[height=5cm, width=9cm]{presentation_potential.pdf}
%\caption{show an example picture}
\end{figure}
\end{frame}
%\vspace*{0.3cm}
\begin{frame}[t]{Distribution of Aggregate Morphologies}
\vspace*{-0.5cm}
\begin{figure}
\includegraphics[height=3.5cm, width=0.43\columnwidth]{final2.png}
\vspace*{0.1cm}
\includegraphics[height=3.5cm, width=0.43\columnwidth]{50_monomers_neighbor1_bis.png}
%\caption{show an example picture}
\end{figure}
\vspace{-0.5cm}
\begin{figure}
\includegraphics[height=3.5cm, width=0.43\columnwidth]{50_monomers_neighbor2_bis.png}
\vspace*{0.1cm}
\includegraphics[height=3.5cm, width=0.43\columnwidth]{50_monomers_neighbor3_bis.png}
%\caption{show an example picture}
\end{figure}
\end{frame}
\subsection{Determination of the Fractal Dimension}
\begin{frame}
\begin{figure}
\includegraphics[height=5cm, width=5cm]{camera.jpeg}
%\caption{show an example picture}
\end{figure}
\end{frame}
\section{Conclusions}
%\vspace*{0.3cm}
\begin{frame}[t]{Final Remarks}
\begin{itemize}
\item Simplified 1D model for soot solid nanoparticles (PMP
recommendation) $\Rightarrow$ runs on any up-to-date PC within hours.
\item Determination of characteristic time-scales.
\item Different role of agglomeration for Euro4-5 vehicles.
\item Modelling complements the experimental information on soot
aggregates $\Rightarrow$ theoretical investigation on aggregate
structure, mobility and collisional properties.
\end{itemize}
\end{frame}
\end{document}