• R/O
  • SSH

Commit

Tags
No Tags

Frequently used words (click to add to your profile)

javac++androidlinuxc#windowsobjective-ccocoa誰得qtpythonphprubygameguibathyscaphec計画中(planning stage)翻訳omegatframeworktwitterdomtestvb.netdirectxゲームエンジンbtronarduinopreviewer

Commit MetaInfo

Revisión22cc1e99ceb6fd3dc01ac219fb45f744a359588d (tree)
Tiempo2008-08-12 00:48:43
Autoriselllo
Commiteriselllo

Log Message

I fixed a bug in the expression of the kernel (the mass of an aggregate
is NOT equal to the volume, but rather to the number of monomers it
consists of since I am working in units where m_1=1).
FIX THIS BUG also in the code for smoluchowski equation used to evolve
an initially monodisperse aerosol.
I also now calculate the kernel both with <n_i><n_j> and with <n_in_j>.

Cambiar Resumen

Diferencia incremental

diff -r 001ded6119d4 -r 22cc1e99ceb6 Python-codes/plot_kernel_elements_multiple_directories.py
--- a/Python-codes/plot_kernel_elements_multiple_directories.py Wed Aug 06 18:18:03 2008 +0000
+++ b/Python-codes/plot_kernel_elements_multiple_directories.py Mon Aug 11 15:48:43 2008 +0000
@@ -6,7 +6,7 @@
66
77 time_red=p.load("../1/time_red.dat") #time I used when comparing the snapshots
88
9-n_dir=8 #number of different directories where I will be reading the data from
9+n_dir=10 #number of different directories where I will be reading the data from
1010
1111 dir_list=s.arange(n_dir)+1
1212
@@ -20,11 +20,11 @@
2020 print "the snapshot time series is, ", time_red
2121
2222
23-N_mon=5000. #initial number of monomers
23+N_mon_tot=5000. #initial number of monomers
2424
2525 rho=0.01
2626
27-box_vol=N_mon/rho
27+box_vol=N_mon_tot/rho
2828
2929
3030 by=2
@@ -44,14 +44,21 @@
4444
4545 n_j=s.zeros((n_dir,len(my_selection)))
4646
47+######################
4748
49+n_in_j_nonlinear=s.zeros((n_dir,len(my_selection))) # this array and the one below will be used to calculate <n_in_j> which is NOT <n_i><n_j>.
50+
51+
52+n_in_j_nonlinear_aver=s.zeros(len(my_selection))
53+
54+################
4855 n_i_aver=s.zeros(len(my_selection))
4956 n_j_aver=s.zeros(len(my_selection))
5057
5158
5259 sel_ker=s.arange(2)
53-sel_ker[0]=1 #NB: these are ORDERED collisions: I can evaluate k_ij for i<j ONLY!!!!
54-sel_ker[1]=20
60+sel_ker[0]=3 #NB: these are ORDERED collisions: I can evaluate k_ij for i<j ONLY!!!!
61+sel_ker[1]=4
5562
5663
5764 sel_ker=sel_ker*1. #to get a floating point array
@@ -134,6 +141,7 @@
134141
135142 n_i[m,i]=len(s.where(size_dist==sel_ker[0])[0])
136143 n_j[m,i]=len(s.where(size_dist==sel_ker[1])[0])
144+ n_in_j_nonlinear[m,i]=n_i[m,i]*n_j[m,i]
137145
138146 #NB: the definition of n_i and n_j is well-posed even if NO collision involving them took place.
139147
@@ -146,6 +154,8 @@
146154 cluster_name=cluster_name+extension
147155 cluster_name=dir_name+cluster_name
148156
157+ #print "cluster_name is, ", cluster_name
158+
149159 recorded_collisions=p.load(cluster_name)
150160
151161
@@ -219,6 +229,9 @@
219229 n_i_aver=n_i.mean(axis=0) #NO ambiguity about these averages; no problem if either n_i or n_j is zero.
220230 n_j_aver=n_j.mean(axis=0)
221231
232+n_in_j_nonlinear_aver=n_in_j_nonlinear.mean(axis=0)
233+
234+n_in_j_nonlinear_aver=n_in_j_nonlinear_aver/box_vol/box_vol #!!!!! careful with the normalization!!
222235
223236
224237 number_coll_aver=number_coll.mean(axis=0)
@@ -413,14 +426,71 @@
413426
414427 print "coll_dens is, ", coll_dens
415428
429+
430+
431+######## VERY Careful!!!! n_i_nj is now defined as <n_i><n_j> NOT as <n_in_j>.
432+
416433 n_in_j=n_i_aver/box_vol*n_j_aver/box_vol
417434
418435 print "n_in_j is, ", n_in_j
419436
420437 fitted_kernel=residuals_eval(coll_dens, n_in_j, k_ij_inf, k_ij_sup, n_steps)
421438
422-print "fitted_kernel is, ", fitted_kernel[0]
439+if (sel_ker[0]!=sel_ker[1]):
423440
441+ result=list(fitted_kernel[0])
442+ result=s.asarray(result)
443+ result=result/2.
444+elif (sel_ker[0]==sel_ker[1]):
445+
446+ result=list(fitted_kernel[0])
447+ result=s.asarray(result)
448+# result=result/2.
449+
450+
451+
452+print "fitted_kernel is, ", result
453+
454+#print "fitted_kernel is, ", fitted_kernel[0]
455+
456+
457+fitted_kernel_nonlinear=residuals_eval(coll_dens, n_in_j_nonlinear_aver, k_ij_inf, k_ij_sup, n_steps)
458+
459+if (sel_ker[0]!=sel_ker[1]):
460+ result=list(fitted_kernel_nonlinear[0])
461+ result=s.asarray(result)
462+
463+ result=result/2.
464+
465+elif (sel_ker[0]==sel_ker[1]):
466+
467+ result=list(fitted_kernel_nonlinear[0])
468+ result=s.asarray(result)
469+
470+
471+print "fitted_kernel is [nonlinear average], ", result
472+
473+p.save("nonlin_aver_n_i_nj.dat",n_in_j_nonlinear_aver )
474+p.save("lin_aver_n_i_nj.dat",n_in_j )
475+
476+
477+
478+
479+fig = p.figure()
480+axes = fig.gca()
481+
482+
483+axes.plot(time_coll,n_in_j, "bo", label="<n_i><n_j>")
484+axes.plot(time_coll, n_in_j_nonlinear_aver, "k^", label="<n_in_j>")
485+p.xlabel('Time')
486+p.ylabel('Number of collisions')
487+#p.title("Evolution Mean-free path")
488+p.grid(True)
489+cluster_name="non_linear_vs_linear_n_in_j.pdf"
490+axes.legend()
491+p.savefig(cluster_name)
492+
493+p.clf()
424494
425495
426496
@@ -463,6 +533,18 @@
463533
464534 p.clf()
465535
536+
537+
538+
539+
540+p.save("time_coll.dat",time_coll)
541+
542+p.save("k_ij.dat", fitted_kernel[0])
543+
544+p.save("coll_ij_density.dat", coll_dens)
545+
546+p.save("fitted_coll_density.dat",fitted_kernel[0]*n_in_j)
547+
466548 #Now I do as above but I specify a time-span
467549
468550 time_inf=0.
@@ -473,9 +555,21 @@
473555
474556 fitted_kernel=residuals_eval(coll_dens[time_span], n_in_j[time_span], k_ij_inf, k_ij_sup, n_steps)
475557
476-print "fitted_kernel is, ", fitted_kernel[0]
558+
559+if (sel_ker[0]!=sel_ker[1]):
560+
561+ result=list(fitted_kernel[0])
562+ result=s.asarray(result)
563+
564+ result=result/2.
565+
566+elif (sel_ker[0]==sel_ker[1]):
567+
568+ result=list(fitted_kernel[0])
569+ result=s.asarray(result)
477570
478571
572+print "fitted_kernel [on time span] is, ", result
479573
480574
481575 fig = p.figure()
@@ -517,4 +611,260 @@
517611
518612 p.save("residuals_span.dat", fitted_kernel[1])
519613
614+############################################################################################################################
615+############################################################################################################################
616+############################################################################################################################
617+############################################################################################################################
618+
619+#now I compare the results between the calculated kernel elements, the smoluchowski kernel and "our" kernel
620+
621+#First some parameters of the system
622+
623+
624+
625+beta=1. #cluster/monomer 1/tau
626+k_B=1. #in these units
627+T_0=0.5 #temperature of the system
628+m_mon=1. #monomer mass in these units
629+sigma=1. #monomer diameter
630+mu=(m_mon*beta)/(3.*s.pi*sigma) # fluid viscosity
631+
632+
633+
634+r_mon=0.5
635+
636+v_mono=4./3.*s.pi*r_mon**3.
637+
638+print "the monodisperse volume is, ", v_mono
639+
640+## x=s.logspace(s.log10(v_mono), s.log10(v_mono*4500.),400) # volume grid
641+
642+## n_mon=x/v_mono #volume of solids expressed in terms of number of monomers
643+
644+
645+
646+
647+
648+
649+
650+n_mon=sel_ker*1. #to have a floating point array.
651+
652+m=n_mon # since I set the mass of a single monomer equal to 1, then the mass of a cluster is the same as the number of monomers it consists of.
653+
654+print "n_mon is, ", n_mon
655+
656+
657+x=n_mon*v_mono
658+
659+
660+threshold=15. # I define the threshold between small and large clusters, to be used where it matters.
661+
662+
663+small=s.where(n_mon<=threshold)
664+large=s.where(n_mon>threshold)
665+
666+
667+
668+
669+a_small=0.385
670+df_small=2.25
671+
672+a_large=0.223
673+df_large=1.57
674+
675+
676+a_tot=0.246
677+
678+df_tot=1.63
679+
680+
681+
682+
683+def Brow_ker_cont_optim(Vlist):
684+ kern_mat=2.*k_B*T_0/(3.*mu)*(Vlist[:,s.newaxis]**(1./df_tot)+\
685+ Vlist[s.newaxis,:]**(1./df_tot))**2./ \
686+ (Vlist[:,s.newaxis]**(1./df_tot)*Vlist[s.newaxis,:]**(1./df_tot))
687+ return kern_mat
688+
689+
690+def Brow_ker_cont_optim_diffusion_adjusted_and_monomer_beta_fuchs(Vlist):
691+ #monomer volume
692+ #r_mon=0.5 #monomer radius
693+ #v_mon=4./3.*s.pi*r_mon**3.
694+ #v_mono already defined as a global variable
695+ #n_mon=Vlist/v_mono #number of monomers in each aggregate
696+
697+ #print "n_mon is, ", n_mon
698+
699+ Diff=k_B*T_0/(n_mon*m_mon*beta) #vector with the cluster diffusion coefficients
700+ #which just depends on the cluster size.
701+
702+ R_list=s.zeros(len(Vlist)) #I initialize the array which will contain the
703+ #radia of gyration
704+
705+ #threshold=15.
706+
707+# small=s.where(n_mon<=threshold)
708+# large=s.where(n_mon>threshold)
709+
710+# a_small=0.36
711+# df_small=2.19
712+
713+# a_large=0.241
714+# df_large=1.62
715+
716+
717+ R_list[small]=a_small*n_mon[small]**(1./df_small)
718+
719+ R_list[large]=a_large*n_mon[large]**(1./df_large)
720+
721+# R_list[0]=0.5 #special case for the monomer radius
722+
723+# m=rho_p*Vlist # this holds in general (i.e. for Vlist !=3.)
724+ ## as long as Vlist is the volume of solid
725+ ##and not the space occupied by the agglomerate structure
726+
727+
728+
729+ c=(8.*k_B*T_0/(s.pi*m))**0.5
730+ #print 'c is', c
731+ l=8.*Diff/(s.pi*c)
732+ #print 'l is', l
733+ diam_seq=2.*R_list
734+
735+ g=1./(3.*diam_seq*l)*((diam_seq+l)**3.-(diam_seq**2.+l**2.)**1.5)-diam_seq
736+
737+ beta_fuchs=(\
738+ (diam_seq[:,s.newaxis]+diam_seq[s.newaxis,:]) \
739+ /(diam_seq[:,s.newaxis]+diam_seq[s.newaxis,:]\
740+ +2.*(g[:,s.newaxis]**2.+g[s.newaxis,:]**2.)**0.5)\
741+ + 8.*(Diff[:,s.newaxis]+Diff[s.newaxis,:])/\
742+ ((c[:,s.newaxis]**2.+c[s.newaxis,:]**2.)**0.5*\
743+ (diam_seq[:,s.newaxis]+diam_seq[s.newaxis,:]))\
744+ )**(-1.)
745+
746+
747+ ## now I have all the bits for the kernel matrix
748+# kern_mat=Brow_ker_cont_optim(Vlist)*beta
749+
750+
751+ kern_mat=4.*s.pi*(Diff[:,s.newaxis]+Diff[s.newaxis,:])* \
752+ (R_list[:,s.newaxis]+R_list[s.newaxis,:])*beta_fuchs
753+
754+
755+ return kern_mat
756+
757+
758+
759+def Brow_ker_cont_optim_diffusion_adjusted_and_monomer_beta_fuchs_explicit_smallest(Vlist):
760+ #monomer volume
761+ #r_mon=0.5 #monomer radius
762+ #v_mon=4./3.*s.pi*r_mon**3.
763+ #v_mono already defined as a global variable
764+ #n_mon=Vlist/v_mono #number of monomers in each aggregate
765+
766+ #print "n_mon is, ", n_mon
767+
768+ Diff=k_B*T_0/(n_mon*m_mon*beta) #vector with the cluster diffusion coefficients
769+ #which just depends on the cluster size.
770+
771+ R_list=s.zeros(len(Vlist)) #I initialize the array which will contain the
772+ #radia of gyration
773+
774+ #threshold=15.
775+
776+# small=s.where(n_mon<=threshold)
777+# large=s.where(n_mon>threshold)
778+
779+# a_small=0.36
780+# df_small=2.19
781+
782+# a_large=0.241
783+# df_large=1.62
784+
785+
786+ R_list[small]=a_small*n_mon[small]**(1./df_small)
787+
788+ R_list[large]=a_large*n_mon[large]**(1./df_large)
789+
790+ #Now I introduce a modification for R_list < 5
791+
792+ sel=s.where(n_mon==1.)
793+
794+ R_list[sel]=3.87e-1
795+
796+
797+ sel=s.where(n_mon==2.)
798+
799+ R_list[sel]=6.39e-1
800+
801+
802+ sel=s.where(n_mon==3.)
803+
804+ R_list[sel]=7.18e-1
805+
806+ sel=s.where(n_mon==4.)
807+
808+ R_list[sel]=7.48e-1
809+
810+
811+# R_list[0]=0.5 #special case for the monomer radius
812+
813+# m=rho_p*Vlist # this holds in general (i.e. for Vlist !=3.)
814+ ## as long as Vlist is the volume of solid
815+ ##and not the space occupied by the agglomerate structure
816+
817+ # m=Vlist #since rho = 1.
818+
819+ c=(8.*k_B*T_0/(s.pi*m))**0.5
820+ #print 'c is', c
821+ l=8.*Diff/(s.pi*c)
822+ #print 'l is', l
823+ diam_seq=2.*R_list
824+
825+ g=1./(3.*diam_seq*l)*((diam_seq+l)**3.-(diam_seq**2.+l**2.)**1.5)-diam_seq
826+
827+ beta_fuchs=(\
828+ (diam_seq[:,s.newaxis]+diam_seq[s.newaxis,:]) \
829+ /(diam_seq[:,s.newaxis]+diam_seq[s.newaxis,:]\
830+ +2.*(g[:,s.newaxis]**2.+g[s.newaxis,:]**2.)**0.5)\
831+ + 8.*(Diff[:,s.newaxis]+Diff[s.newaxis,:])/\
832+ ((c[:,s.newaxis]**2.+c[s.newaxis,:]**2.)**0.5*\
833+ (diam_seq[:,s.newaxis]+diam_seq[s.newaxis,:]))\
834+ )**(-1.)
835+
836+
837+ print "Fuchs beta is, ", beta_fuchs
838+
839+ ## now I have all the bits for the kernel matrix
840+# kern_mat=Brow_ker_cont_optim(Vlist)*beta
841+
842+
843+
844+ kern_mat=4.*s.pi*(Diff[:,s.newaxis]+Diff[s.newaxis,:])* \
845+ (R_list[:,s.newaxis]+R_list[s.newaxis,:])*beta_fuchs
846+
847+
848+ return kern_mat
849+
850+
851+
852+
853+smolu_kernel=Brow_ker_cont_optim(x)
854+
855+print "smoluchowsky kernel is, ", smolu_kernel[0,1]
856+
857+
858+fuchs_kernel=Brow_ker_cont_optim_diffusion_adjusted_and_monomer_beta_fuchs(x)
859+
860+print "fuchs kernel is, ", fuchs_kernel[0,1]
861+
862+
863+fuchs_modified_below_5=Brow_ker_cont_optim_diffusion_adjusted_and_monomer_beta_fuchs_explicit_smallest(x)
864+
865+print "fuchs_modified_below_5, ", fuchs_modified_below_5[0,1]
866+
867+
520868 print "So far so good"
869+
870+